
Software Design Processes:

A Note on Micro-Sociological Perspectives

Alexandros-Andreas Kyrtsis

Abstract

Studies on software design and software development, departing from theoretical

perspectives based on current work in micro-sociological perspectives, are almost

non-existent. The reasons for this can be traced back to the empirical, theoretical

and methodological underpinnings of the dominant approaches in the social studies

of information technologies, as well as to problems inherent to the subject matter.

Ways out of theoretical and methodological impasses can be found through a better

understanding of the characteristics of processes of the social organisation of arenas

of software design, as well as through a closer examination of the value of certain

aspects of recent micro-sociological theory. The main aspect stressed here is the

importance of the interplay between memory and forgetfulness in micro-processes of

the social constitution of software designing communities of practice, which also put

relationships between actants and objects (tools, methodology manuals, inscription

devices, and IT products) through a prism enabling the study of the emotional

underlay of fluid but directed formations of contingent spaces of software design.

Understanding software design processes

How important are creative design practices for the world of software

development and how do they fit within processes of developing and

delivering products and services by IT companies or organisational IT

divisions? Astonishingly enough, researchers in the social studies of

information and communication technologies know very little about

this. Micro-studies on how software designers really work and produce

informational goods and artefacts, with immense impact on our lives, are

almost non-existent. The few we have are laden with biases blurring subtle

information and obstructing fruitful interpretations. The emphasis of

social science micro-studies of software development and design processes

is laid primarily on how IT specialists discuss constraints originating in

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 193

existing or prospective contexts of use (Crabtree & Rodden 2002; Crabtree

2004). It is true that requirements capturing and subsequent requirements

engineering (especially accountable software engineering) by addressing

what are deemed to be the needs of users, have shifted the focus towards

the social life of informational goods and artefacts. But such efforts, as

detailed workplace studies show (Luff, Hindmarsh & Heath 2000), rarely

reach the point of going beyond studying perceptions or reactions of

technologists encountering user environments. Also, research in the social

shaping of information technologies, although in a slightly different sense,

portrays processes of design and development as results of the internalisation

of societal, economic and political influences and pressures.1 This orientation

is very often combined with an interest in the outputs of technological

communities of practice, in other words in the impact of information

and communication technology products and services upon a society of

users. This has been the main line of the social studies of information

and communication technologies and has led, as everyone knows, to the

production of a vast literature in this field.

The emphasis on the user orientation of designers and developers as

the basis of the critique of technocracy, however legitimate and productive

it may be, is one of the reasons why our vision cannot effectively intrude

upon software designing and software developing communities of practice.

This is mainly due to ‘design fallacy’ which comes from the idea that

design, if carried out as an inductive process of accumulating information

about user and system requirements, can best meet eventual needs (Stewart

& Williams 2005). The critical point here is that, however interactive

design processes may become by involving enabled and empowered users

at every step, the input stemming from the designer’s imagination, in-

tentionality and translations of data perceived dominate the cognitive and

emotional basis of the entire creative design process. Studying the designer

as situated in the world of the user, as Terry Winograd (1996, xvii) pleads,

does not solve the problem of understanding the software engineer’s,

designer’s or programmer’s intentions of generating the operational and in-

formational architecture of the space in which the user lives and works. As

Robert Anderson (1994) has shown, this also applies to ethno-methodolo-

gically oriented studies which are justified by the insight that in many

194 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 194

cases the user’s knowledge of the working context can be as vital as the

designer’s technical knowledge for the eventual success (or failure) of

systems. A similar problem appears in the case of approaches drawing

our attention to participatory design. Proponents of participatory design

seek to illustrate design activities as the result of the reconciliation between

user’s and designer’s perspectives, however they may differ (Floyd 2002, 27;

Kaptelinin 2002, 60). Contrary to this view, the resulting user practices

and enacted artefactual architectures in most cases emerge from the

acceptance and ‘domestication’ of plans, which whenever made apparent

reveal the limits of both social constructivism and of the supposedly

even relationship between the designer and the user (Kallinikos 2004).

Methodologies of user oriented practices are still methodologies,

deriving from decontextualised and abstract ideas. If these are taken for the

standards of how we should view designer and development communities,

analytic vision is blocked. Similar problems appear in reports on how

software designers and developers work, set out by software specialists

(Dittrich et al. 2002) or by managers (Cusumano 2004; Cusumano &

Selby 1998). The theoretical underpinnings of these reports, in spite of

any sociological and anthropological references, are rather technical or

managerial, and this makes them digress from social scientific rigour.

Orientation towards normative technical or managerial scenarios of

action is the usual line along which researchers coming from software

engineering try to fill the gap by initiating detailed studies of software

development processes using methods and techniques of both quantitative

and qualitative social research (Boehm et al. 2005; Kemerer & Slaughter

1997; Lethbridge et al. 2005; Singer at al. 1997). The aim of these analyses

is to understand developers’ behaviour in order to adjust it according to

best practice standards. Understanding the human and emotional underlay

of software design and development processes, with the explicit or implicit

purpose of adjusting or even eliminating it, is the task of any technologist,

not only that of the technocrat. Viewing technologies as settings in which

humans can be disciplined is the dominant stance. What makes the dif-

ference is the approach to disciplining. Technological reductionism is

not the only alternative. Some technological plans draw on the design of

configurations of social role-sets. The micro-sociological sensitivity of

195Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 195

many of the studies carried out by IT specialists is much more related to an

interconnection between, on the one hand, the imposition and acceptance

of methodologies, and on the other systems of role distribution among

practitioners who, willingly or not, accept these methodologies. Besides any

more or less subtle technocratic ideologies, these studies are one-sided

because they divert attention from the actants who try to weave disciplinary

plots. The point is that technologies do not solely emerge from the symbolic

orientations and the emotions of the ones who are disciplined, but also

from the symbolic orientations and the emotions of the ones who try to

discipline others in the name of technological rationality. The technological

intention is not reflexively and critically discussed in these approaches

and this distorts the whole of the analysis. In most cases methodologies of

design as well as of requirements capturing, which structure deliberation

culminating in shaping especially complex formal systems, can be a signifi-

cant source of discourses of user communities delivering requirements:

users’ discourses are a direct or indirect reflection of designers’ and

engineers’ discourses. In this sense many texts related to software and re-

quirements engineering, although they can have a micro-sociological touch,

seek to create configurations of social roles as part of working methodologies

addressed to groups of IT specialists, or as part of technical prescriptions

addressed to users who are supposed to have a greater ability for adopting

technologies if they follow a certain role-play or script. Methodologists

seek to create social roles, but also social role distributions appear as the

basis of methodologies, as is the case with agent-based approaches to

software development (Jennings 2001). What makes agent-based software

engineering interesting is that it departs from role-sets which can be

regarded as structural features of domains of social and organisational

action corresponding to sets of computer applications. Versions of software

engineering into which these kinds of translation evolve, are object-oriented

software engineering or pattern language oriented software design.2 In

sum, the formal construction of techniques of role-set engineering, deriving

from methodological prescriptions and assessment metrics, even if they rely

on concepts borrowed from micro-sociological approaches and research in

social psychology, is exactly the opposite of what we need. These analytic

perspectives adopted by technologists belong to the technological practices

196 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 196

the social meaning of which will remain unexplored as long as our mindsets

and the lack of appropriate field research make it difficult for any attempt

to know more about software designers and software developers.

The dominant role of technologists in the study of software design

and development processes is of course due to the fact that very few

sociologists or anthropologists have the necessary technical knowledge.

But even for the ones who belong to this minority, investing in time-

consuming participant observation or narrative interviews seems not to

be necessarily a sensible option. Besides, there are difficulties inherent to the

subject matter: the propositional part of discourses in such communities is

extensively bound to informational tools, inscription devices and congenial

diagrammatic reasoning.3 Appropriate skills of the observer often do not

suffice; only practical involvement can, under certain circumstances, enable

a thick description of the pertinent practices—not an easy task to cope

with. Such lack of knowledge and skills is a secondary handicap, however,

since most people have not even the feeling which might orientate them

towards posing the relevant research questions. And practitioners, who

might be both motivated and skilled, are certainly not preferable recruits

for this job, as they almost inescapably lack the ability of observation from

a critical distance. Missing sociological, anthropological or micro-historical

entry points to the world of software people, which thus remains unknown

to outsiders, are then combined with standards of technological relevance

intensifying the narrowing of vision.

Another handicap of studying fields of software design and develop-

ment arises from difficulties in demarcating the domain of inquiry. The

discussion tends to run without realising that not all kinds of specialists

in all kinds of communities of software people work under the same

emotional and epistemic regimes. The emergence of the software designer,

as a dominant role among others in multidimensional role-sets, is a con-

sequence of the shift of software towards the symbolic and the cultural.

This shift can also be observed in the role of the so-called system analysts,

even sometimes in the roles of the so-called presales specialists. But

these roles, contrary to other software development roles, are too much

adapted to short-term problem solving and customised or versioned partial

IT solutions.4 User-orientation and solution design among analysts and

197Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 197

presales staff is then bound too much to sales strategies and probably

also to asymmetric information between developers, vendors and users.

Further, there is a crucial difference concerning the divergence between

communities of computer scientists and programmers on the one hand,

and software designers on the other. Or better, between communities

where the one category dominates the other. Among the various categories

of specialists there is one which tends to place itself between the two.

These are the software engineers, who differentiate themselves from

computer scientists and programmers by giving emphasis to what they

call requirements engineering, but who are also different from software

designers by putting emphasis on formalised methods of translating the

social into the technical. Software engineers, despite any nuances, are

always on the side of computer scientists and programmers, whereas soft-

ware designers, a species appearing in the later stages of the evolution of

informatics and gradually becoming dominant especially in innovative IT

companies, despite any problems stemming from the design fallacy, are

always very much preoccupied with understanding user contexts and users

(Cusumano & Selby 1998, 79). Computer scientists and programmers, but

also main-stream software engineers, are closer to the character of experts,

whereas software designers are more like reflective practitioners.5 Besides,

computer scientists and programmers are oriented more towards auto-

operative processes, whereas designers are more oriented towards tech-

nologically enabled human action in context (Oberquelle 2002, 398).

What also differentiates the various categories of computer specialists

is the degree to which parting software from program is a priority with

implications for their practical styles. Whereas programs can be reduced

to algorithms, software is in addition associated with documentation

and configuration of pieces of information needed to create the necessary

knowledge which triggers modes of operation. In other words, whereas

programs are sets of transformations of data into information, software

extends and articulates the functionalities through transformations of

pieces of information into knowledge and knowledge-bound practices.6

Many software engineers (King 2005; Sommerville 2001, 5) make this

distinction but believe in the possibility of eliminating, by purely scientific

means, the tension between the first and the latter part of these processes

198 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 198

(MacKenzie 2001). This tension creates dividing lines between software

and program, as well as between software engineering and software design—

the latter being an activity oriented towards genuine attempts at under-

standing user contexts and users (and thus design configuration of

activities and system functionalities) by trying to translate the technical

into the human aspects and not vice versa. The social roles of translators of

the technical into the human tend to become dominant in many contexts of

software and information systems development. Translating the technical

into the human can nowadays be very often the main preoccupation of

designers of system functionalities, in spite of not being always widely

accepted among informaticians. The culture of informatics historically

stems more from the mentalities of programmers who are interested in

specifying automatic computations or algorithms which are taken for the

basis of solving well defined formal, as well as real world problems (Floyd

2002, 13–14). Programming relies on a clear separation of the human

and computer elements, putting emphasis on functional and technical

requirements and operational reliability. The problem we are facing then,

because of the primacy of the formal and the technological element, is

that this separation of programming language and the language of human

relations implies an imposition of the former upon the latter, resulting in

forms of decontextualisation or fragmentation of the social world in working

contexts by equating social processes with program functionalities.

Contrary to computer scientists and programmers, software designers

become deliberately involved in the elaboration of this contradiction

between contextualisation and decontextualisation. The more software design

and development requires metaphors and tensions of the contextualised

world, the more these metaphors and tensions are transferred into the

micro-fields of social interaction among software designers, developers

and programmers. Despite the differences in both practical and discursive

power, the subsequent co-evolutionary processes can enhance the ties

between the dynamics of several software-producing communities of practice

and the communities of users and operators of systems and remote devices.

Thus general rules and methodologies acquire much more diverse and

ambiguous uses in such enacted spaces of action, than is insinuated in

the textbooks and handbooks.7 Rules are construed and discursively

199Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 199

repackaged in a way that carries in it the dual intention to make utterances

conventional both in terms of the culture of the guild of software specialists

and in terms of the culture of the particular and socially differentiated

communities of practice. Embedding computer artefacts in social contexts

creates conditions for recontextualising auto-operative procedures. This

brings the software designer on stage. Whereas software development is

very often seen as related to software embedded in devices, software design

puts emphasis on software embedded in social contexts such as human

work and communication lending meaning to both tangible and intangible

technological artefacts in a quite different sense. The plurality of con-

texts and the tensions stemming from the differentiation between internal

and external fields of action becomes then crucial. But this is the central

point of the next section. What we want to focus on here is the fact that

social contexts make technologists less of a scientific problem-solver and

more a sort of designer as we encounter them in other fields.

The critique of design fallacy combined with the shift from auto-

operative to enacted uses of technology draws our attention to the need

of understanding the designer communities as a priority compared to

the understanding of user communities. What we would need is to go

back to the internal world of software designers and see how they create

their internal dynamics without tracing back every possible aspect to the

complex elaboration of the external world or to the external influences

inflicted upon fields of design practices. In other terms, it is because of

the boundary created around these designer communities that they can

create a point of view which allows them to shape the messages of the

world as a result of their intentionality. It is their internal constitution

which makes the world of software development meaningful to them. In

other words, for various reasons related to the social organisation of

design practices, there is no meaningful external view of the world with-

out in-group dynamics or both real and imagined strong network ties

within designer and developer teams. If there is a real significance of

user orientation this has to do with representations leading to the social

constructions of the user in designer communities.

200 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 200

The social organisation of software design

Software design is the progressive metamorphosis of knowledge concerning

fields of action, and thus also concerning fields of social interaction, into

a multilayered language that can be read and executed by a computer and

in parallel understood by operators and users. Contrary to programming,

software design is an exercise in manipulating resources in order to create

not only executable instructions for a machine, but also to describe intel-

lectual property, i.e. forms of knowledge acquisition, rather than mechanical

properties (King 2005). The processes of knowledge acquisition inherent

in software design processes relate internal design environments with

environments of use external to these in a dynamic manner. Software de-

velopment, and especially its design part, is not an introvert activity

taking place in inward looking closed communities of practice or by

remote and solitary actants. It relies on the interplay between internal and

external social and organisational environments. This means that as a practice

it cannot rely on social and symbolic resources of a totally marginalised com-

munity as is often the case with many research communities structured

around stable central problems and paradigms. Software production is

always the result of a diverse set of both strong and weak ties among

members of various communities. In Ronald Burt’s terms, it always takes

place in structural holes of social networks (Burt 2004). One of the

implications of this is that solutions and problems never coincide with

technology, which means that there are strong reasons to look beyond

the technical features for the constitutive aspects of such processes (Nyce

& Bader 2002, 29). This coincidence of solutions with technology can be

encountered only in cases where we have marginalised closure, when an

almost autopoietic reproduction of internal symbolic and cognitive re-

sources of communities suffices to bring about the expected products of

both manual and intellectual labour. This is the case whenever software

engineers tend to view these processes as a direct outcome of hard and

supposedly ultra-rational decisions leading to the crystallisation of oper-

ational knowledge and to its mapping onto a completely unambiguous

language (King 2005). However, both the origin in social representations

and the complexity of interactions among the various layers of the language

201Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 201

code (machine code – programs – end-user application – operator instructions

– users’ information etc.) make software a contingently structured product.

These contingencies and the indeterminacies they may imply could never

be the basis of delivering IT products and services without the preceding

shaping action of the charismatic software designer. How much charisma

is needed depends on various factors, among these being the innovativeness

of ideas they seek to implant in milieus of resisting users, or the intensity

of change required in designing and developing teams.

Since creating and manipulating the contingent and multilayered

language of software implies manipulating sets of both artefacts and humans

in user contexts, software designers must bring about the symbolic frame-

work and the rhetoric needed to make marketers and implementers of

technologies succeed. This implies that a tight link between meaning

and operation appears as a prerequisite of the life of any system created

by the designer’s mind. Consequently, without the appropriate cultural

production any symbolic manipulation as part of the technical artefact is

rendered useless (Brown & Duguid 2000). Software design, in trying to

face this, becomes an act of putting objective realities, i.e. brute facts, in

perspective. It is an act of transforming brute facts into institutional facts,

and through this, sets of institutional facts into other sets of institutional

facts. The intention of producing a perspective in networks consisting of

both artefacts and humans is what counts. Software design is, in reality,

more requirements determination than requirements analysis (Hohmann

1997, 12–13; 2003, 1).

The word perspective, although it derives from the usual metaphor, is

meant here in a more literary sense. Erwin Panofsky wrote in his celebrated

treatise published in 1927 that the ‘Perspective in transforming the ousia

(reality) into the phainomenon (appearance), seems to reduce the divine

into subject matter for human consciousness; but for that very reason,

conversely, it expands human consciousness into a vessel for the divine’. In

more profane words, socially constructed perspectives transcend mundane

things into meaning by putting them in the context of micro-fields.

What makes software design so special is that, contrary to programming

and software engineering, it brings about new instances in processes of the

social organisation of technological communities of practice. Designers,

202 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 202

contrary to programmers and software engineers, transform arenas of

development into arenas of design. What is it that makes the difference?

The main thing is that designers, and for that matter software designers,

seek to create and impose upon others new perspectives. Design (to para-

phrase Adrian Forty, 1986, 11) and technological (software) design alter

the way people see commodities, devices and systems. Design is critique

triggering social change (Berg 1998). Further design is a form of recursive

but directed conversation with objects and significant others (Fry 1999,

289–290). The directedness is driven by the imagination of designers

facing prospective operational situations or situations of use. This means

that inevitably the imagination of the designer is directed towards the

creation of a community of practice constituted around the artefact

emerging from the process of design. On the other hand, despite the

momentum of intentionality and the orientation towards novelty, design

action has its limits set by the world and the pre-shaped minds of the

people and the features of the artefacts and the materials involved. This

means that the designer’s mind as well as the minds of users are always

maladapted to the part of the world consisting of brute facts, or of insti-

tutional facts external to their own community, i.e. of facts not shaped by

the design act. The designer overcomes this obstacle through mythologies,

which enhance both his / her rhetoric and design methodologies. This is of

decisive importance for the way practices of software design are embedded

in forms of social organisation with specific characteristics.

Software designers never work alone. Software development processes,

in which software design activities take place, are complexly structured

multifaceted and multifunctional group processes comprising outcome re-

views, project meetings, informal exchange, both vertical and horizontal,

of information on tools, critique of products and services etc. (Hohmann

1997, 149–150). Groups of software developers and designers must often

accommodate many different specialists and stakeholders and deal with

the uncertainties which the interactions among them may cause. Solutions

in such environments emerge from a perpetual state of discovery, not only

material, but social discovery as well. The fields of action involved create

many different outcomes which try to reduce uncertainty and increase under-

standing. Within these processes software designers create blueprints, scale

203Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 203

models, describe computer-based solutions, and produce requirements doc-

uments, data models, prototypes and charts originating from a plethora of

decisions (Hohmann 1997, 24, 34–35). However, the complexity of these

processes is due rather to social than to artefactual factors. A high per-

centage of the members of the social groups undertaking such activities

are really charismatic personalities; many others believe that they are or

imagine that they could be. This does not apply only to the legitimate

leaders in such social groups, but also to many other specialists who have

to accomplish even minor creative tasks and thus must maintain a pride

in their work if they want to keep being productive.8 Within the software

developing teams designers are not the only ones who feel like prima donnas.

This may apply to a lesser extent to systems or business analysts or re-

quirements engineers. But programmers are incurable individualists.9 This

relatively strong ego, which often emerges from the necessity of distributed

knowledge and creativity, is not always helpful. It can happen that in the

end individual group members have to solve problems on their own, but

there is a constant shuttle between working alone and working with

others, as there is a fluid alternation between relative hierarchical positions

depending on the switch between various subtasks. Code writing and pro-

gramming can be crucial here and cause forms of both cooperative and non-

cooperative games of social interaction. Further, tensions amongst various

specialities, with the most characteristic ones being between analysts and

programmers, but also amongst other stakeholders, must also be tackled

(Bødker et al. 2002, 280; Nørbjerg & Kraft 2002, 211–213). One of the

problems chief software designers have then to face is that establishing

hierarchies in teams with a complex system of division of labour and

dependence on horizontal communication amongst knowledge workers is

much more difficult than in other kinds of designers’ workshops. Software

designers, if they want to see their ideas transformed into deliverables,

must shape the teams of co-designers and developers. This is something

that all designers depending on larger groups know, namely that there is no

design if you cannot appropriately design and cultivate forms of collab-

oration in your own team. Orientation towards qualitative standards, as

well as styles of design and consequent features of products depend very

much on styles of the internal organisation of designer teams.10

204 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 204

Designing and setting up a design and development team means, among

others, establishing commonly accepted forms of interaction and relevant

rules, sometimes on the basis of established or in-house methodologies.

Established generic methods often related to IT products and services with

a strong brand, as well as local proprietary methods and requirements

documents, undoubtedly play a strongly influential role in these decisions.

Nevertheless, subjective and inter-subjective criteria become more im-

portant than the supposedly objective technological ones.11 Value orientations

and emotions become much more important and are also much more

easily articulated whenever explicit and pressing externally imposed re-

quirements do not exist or are loosely defined. Cognitive styles related

to social and cultural codes, which describe how much externally imposed

structure we want to afford during problem-solving, can also be crucial.

Social goals capture the imagination of technologists and provide them

with preferences for tools and both material and symbolic aspects of

practices. For example, the goal of certain group members might be to

become proficient in JavaTM or to be rather a fashionable C++ type of

programmer than an old fashioned but indispensable COBOL specialist, or

to acquire prestige and status in a group through innovative knowledge

and unprecedented skill. However, time criticalities and the perception of

operational risks to which projects are exposed can significantly undermine

these aspects or the tendency towards relatively autonomous subjectivity.

Top-down approaches can then appear justified. Deadlines and risk per-

ception can bring rigid method and command lines back in, or at least

deliver a pretext for the instalment of managerial power. The more dead-

lines or standards-related pressures are encountered in projects, the more

the rationale for the importance of method is related to the idea that its

use facilitates coordination and thus legitimates the coordinator’s roles

and power.12 A method such as those deriving from familiar system archi-

tectures, or from a topology of system objects, provides a starting point for

high-performance teams (Hohmann 1997, 178). This can succeed because

of the role distribution and the hierarchies deduced and justified on the

basis of a reference to the strength of a method—subsequent technologies

of the self do the rest and enhance compliance of the ones who are placed

at lower echelons within the group. Software designers and software

205Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 205

developers may try to transform a situation not very convenient for the ex-

ploitation of creative intentions and productive skills into one with much

higher degrees of freedom. However, opportunities and contingencies

vary significantly and under certain conditions they tend to shrink to

zero. This is, for instance, the case when hierarchical pressures combined

with division of labour or segmentation of project components lead to

sets of prescribed tasks. The types of project can also play a role. There

are things like company bids, public tenders, subcontracting, outsourcing,

insourcing, parameterisation, customisation, etc. which can restrict the

creative element down to subsystem or component level, or even worse,

to the level of building components of device-embedded auto-operative

software or of collecting data for presales reports. At this level and in these

practical domains, nothing more than the design of technical aspects is

possible, a design which does not include design of social aspects of tech-

nology (relations of configurations of artefacts with configurations of

users; communications streams, roles and emotional configurations, symbols

and values, hierarchies etc.)—operational and instrumental features over-

whelm all the others. This kind of technical design in its most sophisticated

version can be compared with the application of existing knowledge to

the solution of a practical engineering problem. It rests on disciplinary

knowledge in the sense of normal science, and the social prestige of the

bearers of such expert knowledge derives from the repetition of invariant

information, as well as from the reduction of knowledge to constant prin-

ciples and maxims. This pressure often influences designing communities

because of the centrality of the marketing function. Not only technology

per se and its scientific rationalisation, but also the more banal impact

of the marketing function upon software design can have significant

consequences in the direction of standardisation. Ritual and hypocrisy in

language used with the purpose of appearing conventional to managers

and clients can be one of the possible results. Speaking normatively but

acting informally and perhaps also non-institutionally is one of the tensions

which characterise IT communities—and this occurs the smaller the social

distance is to user organisations.13 Social proximity to programming and

hard-core software engineering communities with high prestige and an in-

timidating scientistic posture can also play a role. Hard-core engineering

206 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 206

communities can be very successful in imposing tools, linguistic standards

and rituals. Disputes on the modalities of integration in systems of inter-

acting humans and artefacts can be another issue related to power struggles

in or among teams. Pressure for integration also means pressure for better

communication, knowledge and information management and common

understanding of problems and problem-solving strategies on the ground

of the acceptance of perceived technological parameters (Hohmann 1997,

235). But although structure, formalisation and institutionalisation are

needed, they cannot be achieved on the basis of ritualism. As we have

already stressed, these rules and methodologies can never be as stable as

many would wish. Improvisation and improvised coordination can here be

of decisive importance as a way to realise or to complement rules. Software

designers as managers in these contexts have to encourage innovation

and thus create spaces of freedom and ‘creative flow’, but at the same time

create spaces of containing and disciplining others, otherwise projects

and plans ‘can spin out of control’ (Cusumano 2004, 3). This does not

work with factory mentality.14 As Cusumano (2004, 130) observes in his

study on Microsoft: ‘It is unreasonable to expect most software projects

to have both successful outcomes and be easy to manage’.

Software designers always belong to conflict laden arenas of design.

In other terms, the social organisation of arenas of design is what makes

software design possible, whereby social organisation is not understood

as something stable and harmonious.15 We understand social organisation

here as a mapping of social orders (induced or spontaneous) upon forms

of action. Although it is a truism to say that social action is possible and

thinkable only in the framework of social organisation, it is not equally

obvious that this implies contingent non-arbitrariness. Social action

takes place in social orders which regulate in a contingent, not in a

deterministic manner, both content and form of purposive action and the

direction of intentionality. Social action is then a constant reordering

both in the sense of network structures and mental maps emerging from

the intentionality of actants. Coexistence, coordination and collaboration

is then the outcome of fluid and selective ties on the basis of changing

configurations of value orientations, as well as on the basis of changing

configurations of forms of exploitation of material, social and cultural

207Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 207

resources. These changing configurations are the outcome of changing

configurations of intuitions and interpretive discursive utterances. This

relatively fluid and although not always conscious, but definitely active

elaboration of social orders makes social organisation also something dif-

ferent from social structure. Firstly, actors are not compliant conformists

and this structure does not fully determine action. Secondly, structural

constraints have an indirect impact by creating the contingencies in spaces

of action. These contingencies imply forms of resistance, translations and

inversions of symbolic orientations and meaning. In this sense structural

frameworks can tacitly imply or even sometimes explicitly provoke,

through uttered interpretations or ‘interpellations’ addressed to involved

actants, processes of transposition of their own substance. In this sense

structural moments can function as regulatory principles of contingently

induced or directed changes in the form of social organisation. Decisions

as radical acts of structural detachment always derive from the history of

structures. Control by powerful actors also makes sense on the basis of

structural consciousness. This also applies to escaping control through

social differentiation, as well as attempts to stabilise forms of social inter-

action through institutionalisation or formalisation on the basis of language

and rituals. A script describing roles can be one of the main aspects of

such developments. Such role ascription or role achievement can be related

to changes in both central and instrumental social values. The centrality

of values and the degree of implication for encountering problems of

structural anomy can be of decisive importance for the understanding of

the degree of innovation and change. What is important for the discussion

here, however, is that innovations, and embodied innovators, also change

the forms and content of social organisation, i.e. innovators always try to

bring about, in various degrees, social change. And this applies also to

technological innovators to whom software designers belong.

Arenas of software design are not socially organised in the same way

as arenas of mere software development, although there can be no arena

of design without development functions.16 As their social organisation

emerges from intentions to adopt action enabling the accommodation of in-

novators, arenas of design are much more laden with emotions stemming

from an active encountering of social, organisational, technical and material

208 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 208

constraints and opportunities than are conventional and reproductive

arenas of development. Actors in arenas of software design are interested

in cultivating their ego through novelty and thus tend to be characterised

less by reproductive and more by productive skills. Furthermore, software

designers are innovators who provoke change of the social organisation

not only in contexts of use accepting the products of the design, but also in

the arena of design to which they belong. This means that arenas of design

are in constant flux, contrary to arenas of more conventional development,

which can rely on the reproduction of results of previous discoveries,

inventions and successful promotion of past innovations. The social and

psychological profiles of software designers correspondingly diverge

from those of more conventional software developers. The dual role of

software designers, who must be at the same time innovators of contexts

of use as well as of contexts of design, can be taken on only by those

members of modern societies whom Margaret Archer characterises as

‘autonomous reflexives’.

Autonomous reflexives are subjects who possess the ability to describe

and reshape their own identity as a consequence of the deliberate intention

to reposition themselves in processes of social organisation. In addition,

they can distance themselves from structural and symbolical constraints

by inventively using and reordering inter-personal relations (Archer 2003,

133, 188, 227–228). Software designers, as autonomous reflexives, cultivate

their roles through the appropriate narrative, i.e. they possess the ability

to create their own myths endorsing the invention and perhaps also the

consecutive re-inventions of their identities, as well as of the identities of

the ones they seek to organise according to their plans.17 Positioning soft-

ware designers among autonomous reflexives makes it easier to explain

how we propose to understand their arenas of activity. As arenas of

design are considered here as social fields in which we can find forms of

social organisation, or are part of forms of social organisation, depending

on the existence in them of autonomous reflexives, collaborating with

other less reflexive individuals, with operational intentions to produce

(tangible or intangible) artefacts.18

209Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 209

Micro-sociological perspectives

The adoption of micro-sociological perspectives of software design proc-

esses does not necessarily imply ignoring the macro-processes. Socio-

technical regimes, the formation and evolution of transnational scientific

disciplinary networks, economic parameters, the political system and legal

regulations, as well as public opinion and widespread cultural patterns can

be of decisive importance for the macro-environment of social clusters in

which software design and development take place. Macro-processes

define the availability of resources and constraints, and this plays a role

especially when micro-fields attract the attention of powerful actants

who are interested either in controlling and exploiting activities or in pre-

venting the emergence of antagonistic groups. But all these aspects are

rendered meaningful through their translation into micro-processes where

empowered subjects have more opportunities to resist the mystification

of social relations (Scheff 1990, 188). Action can be understood as dis-

cursively embedded only if localized in small groups and demarcated

fields of social organisation. Macro-structures, without being elaborated

by human consciousness in micro-fields, do not acquire any meaning,

and thus work just like dead architectures. Yet studying forms of the

organisation of micro-fields through social interaction presupposes a link-

age between interaction and memory (Harrington & Fine 2006). Forms of

social interaction have their own temporality which makes them meaningful

through reference to the location of events in the past, the present, and

the future. In the case of software design teams, the future is obviously

related to the designers’ plans and the present is perceived in relation to

technological objects, like electronic devices, manuals, tools, inscription

devices, recorded methodologies etc. The past is related to memory and

thus to the deeper layers of emotional states originating in the tensions

between individual desires and the necessities of collective action. The

design of futures, and of course in this case of future technological arte-

facts, mobilises both individual and shared pasts of group members.

This is not always a harmonious process. Relations to others, as well as

relations to objects of use and objects of design, result in sequences of

positive and negative emotions with often diverse consequences among

210 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 210

members of a group. This provokes an undulation between remembering

and forgetting as part of social interaction. Software designers as autonomous

reflexives are especially active in managing this selective remembering

or forgetting. Their collaborators with lower social prestige tend rather

to forget than to remember, depending on the frequency of traumatic

situations due to consecutive pressures for suppressing parts of their

identities and desires. Forgetting can then be the constitutive element of

technologies of the self.

Conditions of social organisation and situations which autonomous

reflexives desire or try to avoid, create orientations and emotions which

have the potential to change themselves as well as the ones who see them as

significant others either by compulsion or by identification. The direction

of deliberate change or the mechanisms of resistance to change which

cause unintended consequences of action rely on a consciousness which

is always intentional. This is a consciousness about objects constructed

through abstractions emerging from the dominant discourses in socially

organised contexts of interaction. These dominant discourses can stem

partly from the surrounding macro-processes, but mainly from the trans-

lations of methodologies and guidelines appearing in the leading designers’

plots. Such socially generated abstractions require substantial omissions

and forgetfulness. Omitting and forgetting is what creates the modalities

of interaction which allow arenas of software development to become

organised. Representations, artefacts, tools, inscriptions and all the inter-

acting elements involved in the design and development of products and

services change because of the emergence and subsequent transformation

of emotions related to omitting and forgetting. Only when technological

objects are felt as emotionally relevant can they contribute to the emergence

of movers of action; and this is also the case when they are viewed as mere

constraints and not as resources enabling the spotting of opportunities.

The idea of forgetfulness as part of processes in groups oriented

towards exploiting knowledge for the shaping of action, as is the case

with designing teams, also draws on the late Husserl, especially on his

book on the crisis of the European sciences. He sees the problem of crisis

there as a pulling apart, as the articulation of a process of separation. The

separation he is mainly thinking of is that caused by the distance we take

211Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 211

from the way we have separated ontological entities which concern us at

an earlier stage. This is forgetfulness as suppression of a past act of tearing

entities apart. This is what we do when we adopt and internalise guiding

methodologies. Their effective application presupposes forgetting our

original feelings in order to avoid reflexive disturbance of actions and

discourses considered as obvious and necessary (Ciborra 2002, 15). This

parting of the structural imagination, stemming from the externalisation

of the angle of observation, from the consciousness and the feelings of

the ones involved in demarcated fields of action is the main problem we

are facing whenever we try to understand the evolving social organisation

and the intricacies of meaningful purposive action in fields of software

design. By adopting a supposedly scientific method we tend to disregard

the fundamental importance of the everyday world of the technical staff, the

designers, and the managers. We tend to look away from the messiness and

situatedness of the enactment of practices, while privileging descriptions

on the basis of geometric worlds created by system methodologies. The

idealities of methods incline us against empirical reminders which can

trace the process of abstraction back to their emotional origins.

We usually think that whenever software designers, software developers,

software engineers and programmers use technical and ritualistic language,

they are sterile technocrats without feelings and emotions. But this must

be regarded as a signal for exactly the opposite. It means that they are con-

struing their world as technocratic and find this a convenient solution in

order to manage their emotions. In arenas of design there is a moral content

of artefacts and procedures: they produce the justification of practices, as

well as the emotional framing of cognitive orientations. However, if we

want to talk in Heideggerian terms, this is hidden behind forms of objecti-

fication stemming from the ‘technological mood’ of software designers as a

way of being oriented towards technological solutions, i.e. towards ordering

the world around us as the only way to create meaning in arenas of develop-

ment. How can we discover the substance of this technological mood by

going behind the contradiction between the technological and the pre-

technological self? According to Andrew Feenberg (1999, 183–199),

situations of technological mood also contain non-technological moods,

or in other words, alternative expressions of the technological self.

212 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 212

Designers who are inclined to put artefacts and methodologies in per-

spective adopt this attitude in particular. This means that although

modern technology frames the world for us as ‘devices’ and hides the full

referentiality (or contextuality) of the world upon which they depend for

their ongoing functioning, we can very often escape from this even by

using the very language of technology. Artefacts cause emotions as they

are encountered by those who take part in interaction ritual chains in

contexts of design.19 They are part of their social world and the way people

speak about them creates emotions and influences action.20 As Ernst

Cassirer has stressed in his philosophy of symbolic forms, objects exist for

the self only through the affective spark they may provoke. Otherwise

they are neither perceived nor acquire meaning. This implies that the

signal for triggering any form of deliberating planned behaviour, as is

the case in contexts of design, stems from the creation of such emotional

settings through interaction ritual chains. Designers, as many other creators

too, are obliged to understand objects and situations as a function of con-

figurations of egos and try to influence them on the basis of a hierarchy

of relevant themes. As Schütz points out, there are various counterpoised

themes and horizons out of the configuration of which intentionality selects

hierarchies of relevancies (Schütz 1982). When themes and horizons

become unconscious or irrelevant, the problem is, following Bergson,

not what we are remembering, but what and why we are forgetting. For-

getting in this case, however, should not mean only having difficulties

in recalling something, but also spontaneously not paying attention,

ignoring or not focusing on something. Sometimes we do not really forget

but we make up our mind in favour of a hierarchy of utterances and con-

cealments. Things we forget, we want to forget or we do not want to

mention in spite of many indications appearing in a field which show that

they are somehow there, are the most important ones for the constitution

of dominant discourses and practices in a demarcated field of action. The

micro-sociological perspective of software design process should drive

the researcher not to pay attention to what is being said and done, but to

the systematic omissions. The rituals of conscious concealment or the ones

provoked by forgetting are perhaps the most decisive for understanding

the high points of collective experience which, according to Collins

213Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 213

(2004, 42), render interaction ritual chains central instances of social

organisation. In technological design contexts the presence of technological

objects is crucial. Objects in the form of artefacts or methodological pre-

scriptions can be devices of draining and relocating communicative energy.

Any such direction of energy creates a rest, a complementary space, where

unarticulated emotions are located. If they can be made manifest, then

we can obtain the valuable concealed information.

Notes

1 The epistemological line along which such studies are made can be found in a

chapter by Madeleine Akrich (1992) in a widely read book on the social shaping

of technology edited by Wiebe Bijker and John Law.

2 Software design methods are based on ideas previously developed for program

design methods. The hardest of these are based either on mathematical methods

or on computer assisted software engineering (CASE) (Iivari 1996). Others draw

on attempts to formalise architectural design as is the case with Christopher

Alexander’s pattern language. Modelling methods and techniques, especially those

based on inscription devices (Latour & Woolgar 1986) or on formal, semiformal,

or diagrammatic notation, as part of a systematic design phase during which stake-

holders seek stabilisation of semantics (Jirotka & Luff 2002, 131) can be crucial

and take up much of the intellectual energy of software designers and developers.

3 As Bertelsen and Bødker (2002, 412) have stressed, design is mediated by design

artefacts. Thus ‘Software designers and developers define design and development

as a scientific, or as an engineering problem, and this is taken to be the natural

order of things’ (Nyce & Bader 2002, 31). On the origins of this in mathematical

cultures: see Heintz (1993); MacKenzie (2001).

4 Customisation, parameterisation and versioning (the latter meaning putting un-

finished IT products on the market provided that they will be upgraded by the

vendor at a later stage) are characteristics of informational goods and IT services.

For a discussion on this see Shapiro and Varian (1998).

5 Experts are supposed to immediately recognise what the hard part of the problem

is and go directly into producing the corresponding solution (Hohmann 1997,

21). But as Scheff (1990, 19) points out, this makes them deny the social bonds

and the emotional origin, or any other soft aspect, of choices and decisions. This

hinders them from understanding and managing messes and orientates them

towards rigid definitions of problems, which implies in most cases deductive

214 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 214

approaches to solution finding and solution design. In other words experts very often

lack the ability to think and act in dialogue with complex situations, unstable

information and fluid configurations of resources, i.e. as ‘reflective practitioners’

(Schön 1983).

6 Software is a cultural object, the emergence of which cannot be traced back to

any formal aspects of mathematical calculus. Even computer code becomes cultural

in the process of production, circulation and consumption of information which

imply the mediation of informatic sociality resulting from the intersections between

the different sets of practices and conventions. As Adrian MacKenzie (2005) has

shown in the case of Linux, code objects emerge from collective agency especially

in open source software development. This is in fact not something new, as we

have always encountered such processes either in intra- or in inter-organisational

behaviour. The difference in this case is more related to issues of property rights.

7 Formalisms are supposed to help to remove the ambiguity of incomplete de-

scriptions and help designers to achieve common knowledge. However, we have

more common talk than common knowledge. As Luciana D’ Adderio (2004, 45)

points out, software design deals with open or incomplete descriptions of the

world. The key problem for all software designers is balancing the informal and

formal assumptions. This balance is by no means easy, as designers are often

socialised on the basis of literatures presenting a normative framework of design

as a highly abstract activity following rules and patterns of well defined procedural

steps (D’ Adderio 2004, 45). This can reify the ambiguity and uncertainty of real

processes emerging form fluid configurations of acts situated in art, science, en-

gineering and tinkering which are difficult to control following rituals and methods.

Squeezing everything into auto-operative procedures is how computer people

prefer to handle real life, but in most cases it does not work like that: this inter-

nalisation, this enclosure in demarcated and self-reproductive codes without

external interference is not what happens in real life, where we have to cope with

various actors and stakeholders acting in complex social environments, as well as

with various forms of communication, negotiation, institutional compromises and

coordination among these (Andelfinger 2002, 190, 199, 201; Cusumano 2004, 149).

8 Software designers, famous stars of the guild excluded, do not enjoy wider pub-

licity. They are known and recognized as important only in relatively small circles.

Only a word of mouth reputation enables these people to survive psychologically

and perhaps have interesting careers in the intra- or inter-organisational IT circles

(Cusumano & Selby 1998, 63).

9 For those individualists, and in these kinds of organisational environments, knowl-

edge sharing also gets difficult (Cusumano & Selby 1998, 71). The differentiation

and segmentation of skills, the diverging non-cooperative prestige acquisition

215Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 215

strategies and the subsequent emphasis on discourses focusing on soft skills make

the management of such teams much more difficult (Cusumano 2004, 171;

Hohmann 1997, 155).

10 For instance, as Cusumano (2004, 11) points out, European software producers

place more emphasis on elegant solutions than on marketing and sales, which can

be interpreted as a rather introvert organisation of design spaces. Richard Coyne

draws attention to a quite different dimension, namely to the role of ‘techno-

romanticism’ as the constitutive element of organisational and network cultures.

Neo-romantic cultures and ‘digital narratives’ emerging in communities of techno-

logical practices, like hackers and computer freaks, make software design and

development practices more an artisanal than a factory like exercise (Coyne (1999,

12, 26–28; also Castells 2001, 36–63). Donald MacKenzie (2001, 333–334)

stresses the differences between managerial and technological styles of approach

which can have an impact on software design cultures. The difference can be

traced back to whether personnel involved in software and information system

development are working ‘hands-on’, and thus know better the risks as implied

by the artefacts they produce, or to a more distant ‘black-box’ approach which

evinces greater certainty but does not have insight into the limitations. These

are parameters on which we can draw in order to better understand the impact

of the orientations and composition of designing teams.

11 Model building, language creation and writing messages are acts of codification

and objectification pursued in the knowledge environment where the interplay

between tacit and explicit elements can destabilise environments of design (D’Adderio

2004, 16–17; Wong & Radcliffe 2000). However, objectification in the form of

standardisation can have opposite effects because it creates problems of ‘noise’

across organisational boundaries due to organizational heterogeneity which hinders

co-ordination across different communities on the basis of common knowledge.

12 Deadlines cause segmentation of social relations, because those who are spatially

segregated in distant communities of practice and on which pressure is exerted

through tight deadlines, tend to develop forms of in-group solidarity with ag-

gression directed against the distant deadline setter (e.g. headquarters). This effect

can reduce the likelihood of effective communication and genuine cooperation

between sites (Nørbjerg & Kraft 2002, 215–216). Deadlines thus also contribute

to the creating of conditions of asymmetric information and segmentation of

practices—if processes are spatially differentiated.

13 Entrepreneurial practices can also be crucial in this respect. Contrary to designers

who are interested in novelty and heroism, vendors are interested in risk manage-

ment and market orientation. However, in the case of in-house developers,

compliance is required, and at the end of the day what counts is that ‘nobody

216 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 216

has been fired because of IBM’. But behind the adoption of branded products

and services, tinkering is done by the unknown IT heroes, who make themselves

important in small communities and in fragmented publicities, which the top

management and the inter-organisational publicity do not perceive.

14 Structured programming was proposed as a way to cope with this contradiction.

Structured programming is interesting because, in a way we have similarly ob-

served in scientific management, the scientific background of engineering the

artefact is projected upon the human aspects of the process of development and pro-

duction. The reference to scientific principles offers the rationale for organising

and managing people in well specified systems of division of labour under the

guidance of ‘chief programmer teams’ (MacKenzie 2001, 39).

15 Raymond Firth’s social anthropology was founded on a theoretical ground of

elaboration of this idea of social organisation. Although his stance was, as in most

structural-functionalist approaches, harmonistic and did not include the idea of

contingency, or any closer analysis of social interaction, an inspiration from his

central ideas can be extremely useful in this context (Firth 1969). What is also

extremely useful from Firth’s ideas, despite his functionalist obsessions, is that these

either visible or invisible mappings of order on action draw on social targets and

values. Furthermore, we can find in Firth the idea of co-ordination as part of the idea

of social organisation. Although this is in my view the weak point of his theoretical

construction, it provokes a counterpoised idea of conflict and negotiation.

16 The concept of the arena of development has been discussed by Jørgensen and

Sørensen (1999). Although these authors take into consideration the possibility

that arenas of development can incorporate actors that are excluded by the dominant

translations (stemming from methodologies, techniques and standardizations),

they do not try to tell us much about how this can emerge in socially organized

fields of inter-action. This is due to a rather uncritical adoption of Actor Net-

work Theory on the basis of which they discuss how representations, inscriptions

and interactions transform objects into IT products and services. The links between

‘distinct strategies and processes that link together both competitive and co-

operative types of relations between locations inside and between actor-worlds’

are taken for granted without questioning their social emergence in fields of

social organization. This halves the value of their truly interesting approach, as

it remains static and does not differentiate between the impact of conventional

and innovative tools, inscriptions and representations as parts of actor networks.

17 Autonomous reflexives in the software industry can gain the prestige of heroes, the

characters of which can be nourished from ‘technoromantic’ digital narratives on

inventors, innovative software writers, techno-frontier artists and techno-creatives,

computer visionaries, elegant hackers, multimedia wizards etc. (Coyne 1999, 31). The

217Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 217

constitution and change of communities of technoromantic software designers emerge

to a great extent from such ‘digital’ narratives, sometimes lending a dramatic tenor to

stories about information technologies (Coyne 1999, 7–9). However, in larger

organisations such narratives tend to be bound to rather conventional symbolisms,

which deprive them of their more expressive and emotional elements (Gabriel 2000).

18 Social aspects, of course, are not the whole story. Arenas of design are socio-techni-

cally structured. Network technologies and network economies have made this socio-

technical structuration of arenas of development rely more and more on a combi-

nation of physical and virtual aspects, as is characteristically the case with open

source software development. The virtual elements do not of course stand alone:

the virtual and the physical presuppose each other and this implies a mediation of

action and discourses through the electronic and virtual spaces (Sassen 2004, 78,

80–81). Further, in arenas of design there is a dynamic interconnection between

actors, artefacts and standards which populate the arenas. Standards in particular

create pressures to comply with constraints which originated from fields of action

structured beyond the borders of the arenas of design (Kallinikos 2004, 141).

19 According to Randal Collins (2004, xii), ‘an interaction ritual is an emotion trans-

former, taking some emotions as ingredients, and turning them into other emotions

as outcomes’.

20 Objects in contexts of design emerge from non-objectified situations, i.e. from

configurations of framings emerging from drifting deliberations of designers. This

statement makes the view presented here different from similar observations by

John Law (2000) who stresses that ‘an object is an object so long as everything

stays in place. So long as the relations between it and its neighbouring entities

hold steady’. ‘And it holds together, it is an object, while those relations hold

together and don’t change their shape’ (Law 1999, 4).

References and further reading

Akrich, M. (1992), ‘The de-scription of technical objects’, in Bijker, W. E., and J. Law

(Eds.), Shaping Technology / Building Society. Studies in Sociotechnical Change, Cam-

bridge, MA: The MIT Press, 205–224.

Andelfinger, U. (2002), ‘On the intertwining of social and technical factors in software

development projects’, in Dittrich, Y., C. Floyd, and R. Klischewski (Eds.), Social

Thinking—Software Practice, Cambridge, MA: The MIT Press, 185–203.

Anderson, R. J. (1994), ‘Representations and requirements: The value of ethnography

in system design’, Human-Computer Interaction 9 (2): 151–182.

218 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 218

Archer, M. (2003), Structure, Agency and the Internal Conversation, Cambridge: Cambridge

University Press.

Berg, M. (1998), ‘The politics of technology: On bringing social theory into tech-

nological design’, Science, Technology, & Human Values 23 (4): 456–490.

Bertelsen, O. W. (2000), ‘Design artifacts. Towards a design-oriented epistemology’,

Scandinavian Journal of Information Systems 12 (1): 15–27.

Bertelsen, O. W., and S. Bødker (2002), ‘Discontinuities’, in Dittrich, Y., C. Floyd,

and R. Klischewski (Eds.), Social Thinking—Software Practice, Cambridge, MA:

The MIT Press, 409–424.

Bødker, K., F. Kensing, and J. Simonsen (2002), ‘Changing work practices in design’,

in Dittrich, Y., C. Floyd, and R. Klischewski (Eds.), Social Thinking—Software

Practice, Cambridge, MA: The MIT Press, 267–285.

Boehm, B., H. D. Rombach, and M. V. Zelkowitz (Eds.) (2005), Foundations of Empirical

Software Engineering, Berlin / Heidelberg / New York: Springer.

Brown, J. S., and P. Duguid (2000), The Social Life of Information, Boston: Harvard

Business School Press.

Bucciarelli, L. L. (1988), ‘Engineering design processes’, in Dubinskas, F. A. (Ed.),

Making Time: Ethnographies of High-Technology Organizations, Philadelphia: Temple

University Press, 92–122.

Bucciarelli, L. L. (1996), Designing Engineers, Cambridge, MA: The MIT Press.

Bucciarelli, L. L. (2003), ‘Design and learning: A disjunction in contexts’, Design

Studies 24 (3): 295–311.

Burt, R. S. (2004), ‘Structural holes and good ideas’, American Journal of Sociology 110

(2): 349–399.

Castells, M. (2001), The Internet Galaxy. Reflections on the Internet, Business and Society,

Oxford: Oxford University Press.

Ciborra, C. (2002), The Labyrinths of Information. Challenging the Wisdom of Systems,

Oxford: Oxford University Press.

Cockburn, A. (1996), ‘The interaction of social issues and software architecture’, Com-

munications of the ACM 39 (10): 40–46.

Collins, R. (2004), Interaction Ritual Chains, Princeton / Oxford: Princeton University

Press.

Coyne, R. (1999), Technoromanticism. Digital Narrative, Holism, and the Romance of the

Real, Cambridge, MA: The MIT Press.

219Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 219

Crabtree, A. (2004), ‘Taking technomethodology seriously: Hybrid change in the

ethnomethodology-design relationship’, European Journal of Information Systems

13: 195–209.

Crabtree, A., and T. Rodden (2002), ‘Ethnography and design?’, in Proceedings of the

International Workshop on ‘Interpretive’ Approaches to Information Systems and Computing

Research, London: Association of Information Systems, 70–74.

Cusumano, M. A. (2004), The Business of Software, New York: Free Press.

Cusumano, M. A., and R. W. Selby (1998), Microsoft Secrets, New York: Simon & Schuster.

D’ Adderio, L. (2004), Inside the Virtual Product. How Organizations Create Knowledge

through Software, Cheltenham: Edward Elgar.

Dasgupta, S. (1991), Design Theory and Computer Science, Cambridge: Cambridge Uni-

versity Press.

Dittrich, Y. (2002), ‘Doing empirical research on software development: Finding a

path between understanding, intervention, and method development’, in Dittrich,

Y., C. Floyd, and R. Klischewski (Eds.), Social Thinking—Software Practice, Cam-

bridge, MA: The MIT Press, 243–262.

Dittrich, Y., C. Floyd, and R. Klischewski (Eds.) (2002), Social Thinking—Software

Practice, Cambridge, MA: The MIT Press.

Feenberg, A. (1999), Questioning Technology, London / New York: Routledge.

Firth, R. (1969), Essays on Social Organization and Values, London: The Athlone Press.

Floyd, C. (2002), ‘Developing and embedding autooperational form’, in Dittrich, Y.,

C. Floyd, and R. Klischewski (Eds.), Social Thinking—Software Practice, Cambridge,

MA: The MIT Press, 5–28.

Forty, A. (1986), Objects of Desire. Design and Society since 1750, London: Thames & Hudson.

Fry, T. (1999), A New Design Philosophy. An Introduction to Defuturing, Sydney: University

of New South Wales Press.

Gabriel, Y. (2000), Storytelling in Organizations. Facts, Fictions and Fantasies, Oxford:

Oxford University Press.

Gal, S. (1996), ‘Footholds for design’, in Winograd, T. (Ed.), Bringing Design to Soft-

ware, Boston: Addison-Wesley, 215–227.

Harrington, B., and G. A. Fine (2006), ‘Where the action is: Small groups and recent

developments in social theory’, Small Group Research 37: 4–19.

Heintz, B. (1993), Die Herrschaft der Regel. Zur Grundlagengeschichte des Computers,

Frankfurt am Main: Campus.

220 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 220

Heintz, B. (2000), Die Innenwelt der Mathematik. Zur Kultur und Praxis einer beweisenden

Disziplin, Berlin: Springer.

Hohmann, L. (1997), Journey of the Software Professional. A Sociology of Software Development,

Upper Saddle River, NJ: Prentice Hall.

Hohmann, L. (2003), Beyond Software Architecture, Boston: Addison-Wesley.

Ihde, D. (1990), Technology and the Lifeworld: From Garden to Earth. Bloomington / India-

napolis: Indiana University Press.

Iivari, J. (1996), ‘Why are CASE tools not used?’, Communications of the ACM 39 (10):

94–103.

Jennings, N. R. (2001), ‘An agent-based approach for building complex software

systems’, Communications of the ACM 44 (4): 35–41.

Jirotka, M., and P. Luff (2002), ‘Representing and modeling collaborative practices

for systems development’, in Dittrich, Y., C. Floyd, and R. Klischewski (Eds.),

Social Thinking—Software Practice, Cambridge, MA: The MIT Press, 111–139.

Jørgensen, U., and O. H. Sørensen (1999), ‘Arenas of development—A space populated

by actor-worlds, artefacts, and surprises’, Technology Analysis & Strategic Management

11 (3): 409–429.

Kallinikos, J. (1995), ‘The Archi-tecture of the invisible: Technology is representation’,

Organisation 2 (1): 117–140.

Kallinikos, J. (2004), ‘Farewell to constructivism: Technology and context-embedded

action’, in Avgerou, C., C. Ciborra, and F. Land (Eds.), The Social Study of Information

and Communication Technology, Oxford: Oxford University Press, 140–161.

Kaptelinin, V. (2002), ‘Making use of social thinking: The challenge of bridging activ-

ity systems’, in Dittrich, Y., C. Floyd, and R. Klischewski (Eds.), Social Thinking—

Software Practice, Cambridge, MA: The MIT Press, 45–68.

Kemerer, C., and S. Slaughter (1997), ‘Methodologies for performing empirical studies:

Report from the international workshop on empirical studies of software main-

tenance’, Empirical Software Engineering 2 (2): 109–118.

King, D. (2005), Parting Software and Program Design, PhD-Thesis, University of

York.

Latour, B. (1992), ‘Where are the missing masses? The sociology of a few mundane

artifacts’, in Bijker, W. E., and J. Law, (Eds.), Shaping Technology / Building Society.

Studies in Sociotechnical Change, Cambridge, MA: The MIT Press, 225–258.

Latour, B., and S. Woolgar (1986), Laboratory Life: The Construction of Scientific Facts,

Princeton: Princeton University Press.

221Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 221

Law, J. (1999), ‘After ANT: Complexity, naming and topology’, in Law, J., and J.

Hassard (Eds.), Actor Network Theory and After, Oxford: Blackwell, 1–14.

Law, J. (2000), ‘Objects, spaces and others’, http://www.lancs.ac.uk/fss/sociology/papers/

law-objects-spaces-others.pdf.

Lawson, B. (1997), How Designers Think, Oxford: Architectural Press.

Lethbridge, T. C., S. E. Sim, and J. Singer (2005), ‘Studying software engineers: Data

collection techniques for software field studies’, Empirical Software Engineering

10 (3): 311–341.

Luff, P., J. Hindmarsh, and C. Heath (Eds.) (2000), Workplace Studies. Recovering Work

Practice and Informing System Design, Cambridge: Cambridge University Press.

Luhmann, N. (1991), Soziologie des Risikos, Berlin / New York: Walter de Gruyter.

McCarthy, S. (1995), Dynamics of Software Development, Redmond, WA: Microsoft Press.

MacKenzie, A. (2005), ‘The performativity of code. Software and cultures of circu-

lation’, Theory, Culture & Society 22 (1): 71–92.

MacKenzie, D. (2001), Mechanizing Proof. Computing, Risk and Trust, Cambridge, MA:

The MIT Press.

Nørbjerg, J., and P. Kraft (2002), ‘Software practice is social practice’, in Dittrich, Y.,

C. Floyd, and R. Klischewski (Eds.), Social Thinking—Software Practice, Cambridge,

MA: The MIT Press, 205–222.

Nyce, J. M., and G. Bader (2002), ‘On foundational categories in software development’,

in Dittrich, Y., C. Floyd, and R. Klischewski (Eds.), Social Thinking—Software

Practice, Cambridge, MA: The MIT Press, 29–44.

Oberquelle, H. (2002), ‘Userware design and evolution: Bridging social thinking

and software construction’, in Dittrich, Y., C. Floyd, and R. Klischewski (Eds.),

Social Thinking—Software Practice, Cambridge, MA: The MIT Press, 391–408.

Panofsky, E. (1997 [1927]), Perspective as Symbolic Form, New York: Zone Books.

Sassen, S. (2004), ‘Towards a sociology of information technology’, in Avgerou, C.,

C. Ciborra, and F. Land (Eds.), The Social Study of Information and Communication

Technology, Oxford: Oxford University Press, 76–99.

Scheff, T. J. (1990), Microsociology. Discourse, Emotion and Social Structure, Chicago / London:

The University of Chicago Press.

Schön, D. (1983), The Reflective Practitioner, New York: Basic Books.

Schütz, A. (1982), Das Problem der Relevanz, Frankfurt am Main: Suhrkamp.

Shapiro, C., and H. Varian (1998), Information Rules. A Strategic Guide to the Network

Economy, Boston: Harvard Business School Press.

222 Alexandros-Andreas Kyrtsis

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 222

Shedroff, N. (1994), ‘Information interaction design: A unified field theory of design’,

http://www.vivid.com/form/unified/unified.html.

Singer, J., T. Lethbridge, N. Vinson, and N. Anquetil (1997), ‘An examination of soft-

ware engineering work practices’, CASCON ‘97, Toronto, October, 209–223.

Sommerville, I. (2001), Software Engineering (6th Edition), Harlow: Pearson Education Ltd.

Sommerville, I., T. Rodden, P. Sawyer, R. Bentley, and M. Twindale (1993), ‘Integrating

ethnography into the software engineering process’, in Proceedings of the International

Symposium on Software Engineering, Los Alamitos, CA: IEEE Press, 165–173.

Stewart, J., and R. Williams (2005), ‘The wrong trousers? Beyond the design fallacy:

Social learning and the user’, in Rohracher, H. (Ed.), User Involvement in Innovation

Processes. Strategies and Limitations from a Socio-Technical Perspective, München: Profil,

39–71.

Vincenti, W. G. (1990), What Engineers Know and How they Know It, Baltimore / London:

The Johns Hopkins University Press.

Wildbur, P., and M. Burke (1998), Information Graphics. Innovative Solutions in Contemporary

Design, London: Thames & Hudson.

Winograd, T. (Ed.) (1996), Bringing Design to Software, Boston: Addison-Wesley.

Wong, L. P., and D. F. Radcliffe (2000), ‘The tacit nature of design knowledge’,

Technology Analysis & Strategic Management 12 (4): 493–512.

223Software Design Processes: A Note on Micro-Sociological Perspectives

***IFZ/YB/07/Text 17.04.2008 11:08 Uhr Seite 223

